Philosophy of cellular Biology

Cell biology is the study of cell structure and function, and it revolves around the concept that the cell is the fundamental unit of life. Focusing on the cell permits a detailed understanding of the tissues and organisms that cells compose. Some organisms have only one cell, while others are organized into cooperative groups with huge numbers of cells. On the whole, cell biology focuses on the structure and function of a cell, from the most general properties shared by all cells, to the unique, highly intricate functions particular to specialized cells.
As microscopes and staining techniques improved over the nineteenth and twentieth centuries, scientists were able to see more and more internal detail within cells. The microscopes used by van Leeuwenhoek probably magnified specimens a few hundredfold. Today high-powered electron microscopes can magnify specimens more than a million times and can reveal the shapes of organelles at the scale of a micrometre and below. With confocal microscopy a series of images can be combined, allowing researchers to generate detailed three-dimensional representations of cells. These improved imaging techniques have helped us better understand the wonderful complexity of cells and the structures they form.
There are several main subfields within cell biology. One is the study of cell energy and the biochemical mechanisms that support cell metabolism. As cells are machines unto themselves, the focus on cell energy overlaps with the pursuit of questions of how energy first arose in original primordial cells, billions of years ago. Another subfield of cell biology concerns the genetics of the cell and its tight interconnection with the proteins controlling the release of genetic information from the nucleus to the cell cytoplasm. Yet another subfield focuses on the structure of cell components, known as subcellular compartments. Cutting across many biological disciplines is the additional subfield of cell biology, concerned with cell communication and signaling, concentrating on the messages that cells give to and receive from other cells and themselves. And finally, there is the subfield primarily concerned with the cell cycle, the rotation of phases beginning and ending with cell division and focused on different periods of growth and DNA replication. Many cell biologists dwell at the intersection of two or more of these subfields as our ability to analyze cells in more complex ways expands.
Among biological entities, cells are regarded as of special importance since they are widely viewed as the simplest organized systems that are unambiguously alive. Although one can debate about entities such as viruses, there is little debate that cells are living. Cells perform all the activities critical to life, from metabolism to reproduction. All cells alive today maintain themselves far from thermodynamic equilibrium with their environment and are part of a continuous lineage of cell division that goes back approximately 4 billion years. The study of cells has required developing means of materially manipulating them and our contemporary understanding of cellular phenomena integrates results from a wide range of material interventions. In introducing a special issue of Studies in History and Philosophy of Biological and Biomedical Sciences on the cell, O’Malley and Müller-Wille assert.
For more kindly go through: Biomedical Research
Biomedical Research accepts direct submissions from authors: Attach your word file with e-mail and send it to biomedres@emedsci.com
Media Contact:
Joel James
Managing Editor
Biomedical Research