Otal antioxidant activity in Parkinson's disease

Image

Parkinson’s disease (PD) is one of the major progressive neurological disorders, characterized by the loss of dopaminergic neurons in pars compacta of the substantia nigra. The causes for this is the interactions between external toxins (which arise from environmental, dietary and life style factors) and internal toxins arising from normal metabolism, genetic and epigenetic (mitochondria, membranes and proteins) components. Oxidative stress is one of the intermediary risk factors that could initiate and promote degeneration of neurons. Even though oxidative stress in brain is an important factor in the neuropathology of PD, yet the role of systemic oxidative stress is inconclusive. In the present study, we estimated the total antioxidant activity (AOA) and albumin levels in twenty PD patients who were on levodopa, and in age matched twenty-five normal con-trols. We observed a significant reduction in total antioxidant activity in PD patients with a mean value of 0.93 ± 0.17 mmol/l as compared to 1.06 ± 0.16 mmol/l in controls (P < 0.001). Albumin levels were also significantly reduced in PD patients, with a mean of 2.52 ± 0.29 g/dl as compared to 3.0 ± 0.54 g/dl in controls (P < 0.001). It could be concluded from our study that the diminution in total antioxidant activity could be due to the reduction of radical trapping capacity of naturally occurring antioxidant albumin, which in turn could be due to reduced dietary supplementation or defective absorption of amino acids. Supplemen-tation of multiple antioxidants may slow down the progression of the disease.

Oxidative stress is implicated in neuronal loss associated with neurodegeneration in Parkinson’s disease (PD). Dopaminergic nigrostrial neurons, the predominant cells lost in PD are believed to be highly prone to oxidative damage. This is due to the propensity of dopamine to autooxidize and thereby produce an elevated levels of H2O2 which reacts with transition metal iron (Fe+3) and forms the highly reactive and cytotoxic hydroxyl radicals (OH-) which are known to damage lipids, proteins and DNA. Iron is frequently associated with neurode-gerative process. The basal ganglia in particular, the globus pallidus and substantia nigra contain high concentration of iron which contributes to free radical produc-tion. Accumulation of iron in substantia nigra contributes to the cell death by enhancing lipid peroxidation, as judged by raised levels of both malondialdehyde and lipid hydroperoxides. There are reports that antioxidant enzymes in plasma are found to be more active but to the best of our knowledge there is no conclusive evidence on the total systemic antioxidant activity in PD patients. Hence we planned a study and correlated the systemic antioxidant activity and albumin levels in patients of PD.

For more kindly go through: Biomedical Research

Biomedical Research accepts direct submissions from authors: Attach your word file with e-mail and send it to biomedres@emedsci.com

Media Contact:

Joel James

Managing Editor

Biomedical Research